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CHIBAL TOLUENE-2,~SULTAM AUXILIARIES: 

ASYMMETRIC ALKYLATIONS, ACYLATIONS AND ALDOLIZATIONS OF N-ACYL DERIVATIVES 

W. Oppolzer’, Inis Rodriguez, Christian Starkemann and Eric Walther 

Departement de Chimie Organique, Universite de Geneve, CH-1211 Genbve 4, Switzerland 

Abstract: Successive treatment of (R)-N-acylsultams 4 with NHDMS/alkyl halides or NHDMS/acyl chlorides 
provides alkylated or acylated products 6 or 1. Diastereoselective reductions of 2 with Zn(BH4)2 or NaHB(sBu)I 
gives “syn”- or “anri”-aldols 8 or 2. Reaction of 4 with BEQ/TfOH/EtN(iPr)2 followed by addition of aromatic or 
aliphatic aldehydes affords diastereomerically pure “syn”-aldols Ip. Non-destructive removal of auxiliary 1 from 6, 
&, 9 and J,Q yields enantiomerically pure products 12 to fi. 

N-Acylbornane-10,2-sultams 1. provide stereochemically pure, crystalline a-substituted products 2. via metalation 

and subsequent reaction with a variety of electrophiles El+ (e.g., alkyl halides, la,b aldehydes, lc l-chloro-l- 

nitrosocyclohexane, ld NBS, le etc., Scheme I). 

Scheme I 

1 2 4 3 

Exploring the potential of the related saccharin-derived sultam 1 (and its readily available antipode) as a chiral 

auxiliary, 2 we focus here on asymmetric carbon/carbon bond forming reactions. Sultam 2 was smoothly transformed 

into acyl derivatives 4 following protocols for the preparation of 1. l 

Alkvla (Scheme 2, Table I): 3 

Deprotonation of 4 with sodium hexamethyldisilaxide (NHMDS) followed by treatment with benzyl- or ally1 iodide, 

flash chromatography (FC) and crystallization (MeOH) furnished stereochemically pure alkylation products 631, & or 

sf (entries 1,3,6). Alkylations with less reactive methyl iodide or I-butyl a-bromoacetate were carried out in the 

presence of HMPA or Bu4NI (entries 2.4 or 5) whereas ethyliodide failed to give the corresponding product 6. 

Scheme 2 
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Table 1 : Asymmetric Alkylations 4 -+ 6 

R’ RaX Additive Time [h] Product Purification m.p.[‘C] d.e.[%] yield [%] 

1 Me PhCH21 __ 2.5 6e FC/cryst. 73-74 >99 81 

2 PhCH2 Me1 HMPA 6.5 fi FC/cryst. 79-80 >99 71 

3 Me CH2=CH-CH21 -- 3.5 6r FC/cryst. 38-39 > 978) 75 

4 CH2=CH-CH2 Me1 HMPA 5.5 hd FC oil 908) 91 

5 Me tBuO2C-CH2Br Bu4NI 6.0 k FC oil ~99 76 

6 N=CPh2 PhCH21 _- 8.0 ti FC/cryst. 156-157 >99 71 

a) ‘H-NMR (360 MHz). 

The topicity of the transformations 4 + 6 are consistent with a predominant attack of the electrophile to the C(a)- 

Re face of the chelated (Z)-“enolate” 5-I. 

Acvlations/Reductions (Scheme 2, Table 2): 3 

Table 2 : Asymmetric Acylation 4 + 2. 

R’ RS d.e.[%] Product Purification m.p.[‘C] d.e.[%] yield [%] 

crude 

7 Me Ph 99.4 

8 Me Me 86”) 

9 Me Et 91 

10 Me CHMe2 92.8 

II Me CH2CHMe2 > 97b) 

12 Et Ph > 99 

13 Et Me 97.6 

FC/cryst. 

FC/cryst. 

FC/cryst. 

FC/cryst. 

FC 

FC/cryst. 

FC 

120-121 > 99 89 

104-105 99.2 62 

113-114 > 99 71 

64-65 > 97 76 

oil > 97b) 81 

108-109 > 99 71 

oil 97.6 70 

a) GC, b) ‘H-NMR (360 MHz): only 1 isomer visible. 

The same topicity was displayed by the C-acylation reactions 4 -+ 2. 4 Successive treatment of acylsultams 4 

with NHDMS and a carboxylic acid chloride afforded 1.3-dicarbonyl products 1. Those epimerized only slowly with 

1 M NEt3 (25 molequiv in CH2CI2, r.t.. 12 h: (S)-& + @)-a + (R)-Lp l:l), analogous to N-(3- 

oxoacyl)oxazolidinones. 4a The lowest diastereoselectivity was observed on acylation of 4, R1 = Me with (the 

sterically least demanding) acetyl chloride (entry 8). However. resulting a (d.e. = 86%) was conveniently purified 

(d.e. = 99.2%) by FC/crystallization, as were most other C-acylation products 1. 

Table 3 : Syn- or Anti- Aldols 8 or 2 by Diastereoselective Reductions of N-(3-0xoacyl)sultams 1 

R’ 

14 Me 

15 Me 

16 Me 

17 Me 

18 Me 

19 Me 

20 Et 

Rs 

Ph 

Me 

CHMe2 

Ph 

Me 

CH2CHMe2 

Me 

Hydride Ratio 819 Purification 

ZnWW2 99.1 : 0.9 tryst. sa 126-127 > 99 82 

Zn(BH4)2 91.3 : 8.7 FC sp oil > 99 81 

Zn(BH4)2 98.8 : 1.2 tryst. sd 108-109 > 99 72 

NaHB(sBu)3 0.7 : 99.3 FC h 146-147 > 99 82 

NaHB(sBu)g 0.2 : 99.8 FC eb oil > 99 80 

NaHB(sBu)jb) 2.1 : 97.9 FC en oil > 99 53 

NaHB(sBu)3 -- FC en oil > 97a) 80 

Major m.p.[‘C] purity]%] yield [%] 

Product 

a) ‘H-NMR (200 MHz) : only 1 isomer visible; b) at -5O’C. 

Chelate-controlled reduction of N-(3-oxoacyl)sultams 1 with zinc borohydride 4a. 5a proceeded without 

epimerization and afforded selectively “syn”-aldols 8 (Scheme 2. Table 3. entries 14 to 16). 
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“Anti”-aldols 2 were obtained almost exclusively when reducing the keto group of 1 with sodium tri-s- 

butylborohydride (entries 17 to 20). 5 The purity of aldols 4 and 2 was increased to ~99% by crystallization or FC. 

. . 
m (Scheme 3, Table 4): 3 

More directly, “syn”-aldols J.Q were produced by successive treatment of acylsultam 4 (R’ = Me) with a dialkylboryl 

triflate/EtN(tPr)2 and an aldehyde (Scheme 3, Table 4). 

Scheme 3 

Table 4 : Asymmetric Aldolixations 4 + M 

R1 Aldehyde Boryltriflate Enolate Conversion Product Ratio Product Yield M.p.[‘C] Purity 

Rs R (molequiv) formation [‘Cl of 3 10/g/11/9 tryst [%] [%I 

21 Me Ph Bu (1.4) -10 to -5 94 97.8/ 0 / 2.2 / 0 ulr 58 117-118 > 99 

22 Me Ph Bu (2.0) -10 to -5 62 7.5/41.4/27.7/23.4 -- -- -- -- 

23 Me iBu Bu (0.7) -5 56 98 / 2 / 0 / 0 -- -- -- -- 

24 Me iBu Bu (1.2) -5 61 21 143 136 / 0 -- -- -- -- 

25 Me iPr Bu (1.6) -5 90 93.7/ l.S/ l.8/ 3 u1Q 50 112-114 98.5 

26 Me Ph Et (2.OP’) -5 100 >99 / 0 / 0 / 0 1p1 84 118-119 > 99 

27 Me Me Et (2.0)a) -5 100 >99/0/0/0 LQb 71 104-106 > 99 

28 Me iPr Et (2.0)S) -5 99 >99 / 0 / 0 / 0 LQd 95b) oil .99 

29 Me iBu Et (2.0)8) -5 92 ~99 / 0 / 0 / 0 LQt 78 113-114 > 99 

a) Prepared in situ from BEt3 and CF3SO3H, b) Purified by FC. 

Employing freshly prepared dibutylboryl triflate led to incomplete conversions and an excess of 

ButBOTf/EtN(iPr)2 resulted in lower stereoselectivities (cf., entries 21/22, 23/24). More conveniently. more 

efficiently and more selectively. aldols u1 were obtained by using in situ prepared diethylboryl triflate/EtN(iPr)2 (2 

molequiv, entries 26 to 29). lc Under these conditions a variety of aldehydes furnished without exception pure 

aldols LQ in high yields. As expected, lc aldolixations 4 + J_Q reflect an electrophilic attack to the opposite “enolate” 

r-face (C(a)-Si) than observed with alkylations 4 + fi and acylations 4 + 1. We ascribe this dichotomy to the 

transition state $@ again involving a (Z)-“enolate”. However, with the boron atom being fully coordinated (and, 

thus, incapable of chelation with a SO2 oxygen atom) the “enolate” adopts an (electrostatically favored) N-SO2/C- 

OML, s-trans conformation. 

Hvdrolvv (Scheme 4): 3 
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Hydroperoxide-assisted saponification (da + m, combined with esterification (&g + u. !& + 19, a + u and u1p 

+ 16) provided enantiomerically pure a-branched carboxylic acid 2 or methoxycarbonyl aldols fi to fi in good 

yields with 92 to 94% recovery of auxiliary sultam 2. The absolute configurations of 12. u. fi and u were 

determined by comparing their optical rotations with published reference values. This correlation allowed to assign 

the sense of induction in alkylations 4 -+ 6, acylations 4 -* 7 and 4 + LQ as depicted in the Schemes 2, 3 and 4. 

The topicities of the alkylations, acylations and aldolixations described here parallel those observed with N- 

acylbornane-10.2-sultams 1. ] An advantageous application of a related toluene-2,a-sultam auxiliary will be 

reported in due course. 

&kno lednements: Financial support of this work by the Swiss National Science Foundation, Sundoz AG. Base& 
And G~cudan SA, Vernier is gratefully acknowledged. We are grateful to Mr. J.P. Swlnier, Mr A. Pinto and Mrs. 
C. Cl&nent for NMR and MS measurements. 
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